
 Design and Implementation of 16 Point Radix 4 Parallel Fast Fourier
Transform Processor

Tin Moe Aye and Chaw Thet Zan
University of Computer Studies, Yangon

aye.tinmoe@gmail.com, chawthetzan@gmail.com

Abstract

The FFT processor is a critical block in all multi-
carrier systems used primarily in the mobile systems
for image and digital signal processing applications.
It is therefore interesting to develop an FFT
processor as a widely usable VLSI building block.

In order to be flexible so that the processor can be
used in a variety of applications without major
redesign , the performance in terms of computational
throughput , and transform length should be: easily
modifiable. This system implements the 16 point
radix 4 parallel Fast Fourier Transform processor
with sfixed format (signed fixed point representation)
and focuses on the complex multiplier design with
two different approaches.

Keywords: FFT, VLSI, Parallel, sfixed

1. Introduction

A major application of Fourier transforms is the
analysis of a series of observations, xl, l = 0,…, N−1:
which allows us to decompose a signal in the time
domain and analyze the signal in the frequency
domain. The sources of such observations are many:
ocean tidal records over many years, communication
signals over many microseconds, sonar signals over a
few minutes, and so on. The assumption is that there
are repeating patterns in the data that form part of the
x. However, usually there will be other phenomena
which may not repeat, or repeat in a way that is not
discernibly cyclic. This is called “noise.” The DFT
(The Discrete Fourier Transform) helps to identify
and quantify the cyclic phenomena. If a pattern
repeats itself m times in the N observations, it is said
to have Fourier frequency m. [1]

The Fast Fourier Transform (FFT), an efficient
algorithm to compute the Discrete Fourier Transform
(DFT), is one of the most important operations in
modern digital signal processing and communication
systems. [2]The parallel FFT is a special type of FFT
which can compute the FFT algorithms by adding
more processing elements to the processor in each

sequential pipeline stage to improve the performance.
But the drawback of parallel design is that the area of
FFT becomes enlarge. [3][12]

2. A Brief Review on DFT and FFT

Basically, the computational problem for the DFT
is to compute the sequence {X(k)} of N complex-
valued numbers given another sequence of data
{ x(n)} of length N, according to the formula

Where
WN's are also called "twiddle factors" which are

complex values around the unit circle in the complex
plane. [2][9]The complex ’rotator’ WN rotates the
other direction and the result is divided with the
number of points N. So the computation is basically
the same.

We can exploit shared twiddle factor properties
(i.e. sub-expression sharing) to reduce the number of
multiplications in DFT. These classes of algorithms
are called Fast Fourier Transforms. An FFT is simply
an efficient implementation of the DFT.

Mathematically FFT = DFT
FFT exploits two properties in the twiddle factors:

– Symmetry Property:

– Periodicity Property:

Actually, direct computation of Discrete Fourier

Transform (DFT) requires on the order of N2

operations where N is the transform size. The FFT
algorithm, first explained by Cooley and Turkey,
open a new area in digital signal processing by
reducing the order of complexity of DFT from N2 to
Nlog2N. [4]

1

0

() () 0,1,..., 1
N

nk
N

n

X k x n W k N
−

=

= = −∑

2 /j N
NW e π−=

N

k N k
NW W+ =

/2
N

k N k
NW W+ = −

3. Radix 4 FFT Algorithm

Radix-4 split x (n) into four time sequences
instead of two in radix-2.The algorithm splits x (n)
into four decimated sample streams

f1(n) = x(4m)
f2(n) = x(4m+1)
f3(n) = x(4m+2)
f4(n) = x(4m+3) ,n=0, 1, .. N/4-1

Therefore, the equations for breaking the he N-point
DFT formula into four smaller DFTs becomes:

From the definition of the twiddle factors, we

have:

Thus, we get :

 To convert it into an N/4-point DFT we subdivide
the DFT sequence into four N/4-point subsequences,
X(4k), X(4k+1), X(4k+2), and X(4k+3), k = 0, 1, ...,
N/4. Then, we obtain the following equations;[2][9]

 The signal flow graph of the 16 point radix-4 fast
fourier transform algorithm is shown in the Figure
1.[5]

Figure 1. Signal flow diagram of 16 point radix-4

FFT

4. 16 Point Radix 4 Parallel FFT overview

In 16 Point Radix 4 Parallel FFT architecture, four
butterfly units are used at the input sites that handle
four inputs each.

After processing in each butterfly unit, some
outputs are fed directly into the one of four output
sites butterfly units and the others are fed directly to
left 3 output site butterfly units via complex
multiplier as shown in the Figure 2.

For all of the output comes out at the same time,
we need to adjust and modify the complex multiplier
design. The abstract view of the algorithm design is
shown in the Figure 2.

Figure 2. Abstract view of System Design

4.1. Butterfly Units

The butterfly takes four inputs and produces four

outputs.
In radix-2 FFT, the DFT equation is expressed as

the sum of two calculations; one calculation sum for
the first half and one calculation sum for the second
half.

 In this design, the radix-4 FFT implements the
DFT equations as four summations. Butterfly units
compute the summations by using four equations,
each of which computes every fourth sample.

The equations are as follows,
 Let x(n) = xa+jya;
 x(n+n/4) = xb+jyb;
 x(n+n/2) = xc+jyc;
 x(n+3n/4)= xd+jyd;
as the four inputs for the butterfly.

djydxrx

andcjycxrx

bjybx

′+′=+
′+′=+
′+′=+
′+′=

)34(

)24(

,1)x(4r

,ajyax x(4r)

as the four outputs from the butterfly and
 Wn=Wb =Cb+j(-Sb)
 W2n=Wc =Cc+j(-Sc)

 W3n=Wd =Cd+j(-Sd)
So that, the radix 4 equations become:

))(()(

))(()(

))(()(

))(()(

))(()(

))(()(

SdybxcybxaCdxdycxbyady

SdxdycxbyaCdydxcybxadx

ScxdxcxbxaCcydycybyacy

ScydycybyaCcxdxcxbxacx

SbydxcybxaCbxdycxbyaby

SbxdycxbyaCbydxcybxabx

ydycybyaay

xdxcxbxaax

−+−−+−−+=′
−−−+−+−−=′
−−+−+−+−=′
−−+−−−+−=′
−−−+++−−=′
−+−−−−−+=′

+++=′
+++=′

4.2. Complex Multiplier unit

In most of FFT design implementation scheme,
the conventional complex multiplication is performed
with four real multipliers, one adder and one
subtractor. As the literature survey, the complexity of
a multiplier is much more than that of adder and
subtractor. Thus we implemented our system with
two approaches by reducing the number of
multipliers.
 As the number of coefficients to be multiplied in
16-point FFT is 16 which are described in the follow
table, Table 1. [5][6]

Table 1. The coefficients for 16 point Radix 4 FFT

A close observation reveals that the seven
coefficients (7fff, 0000) are the trivial coefficients
which are the quantized representation for (1, 0) in
16-bit two’s complement format. The complex
multiplication is not necessary for these coefficients.
Data can directly pass through the multiplier unit
without any multiplication, when data is multiplied
with (7fff, 0000). [6]

And also from the theoretical point of view, the
conventional butterfly unit involves three complex
multiplications, since for the first twiddle factor to be
multiplied W0 and is always 1. For the 16 point FFT,
there are four butterfly units to complete the entire
FFT and thus requiring 12 complex multiplications.
[2]
 By detaching the complex multiplier unit apart
from the butterfly unit, we can reduce the complex
multiplier units from 12 to 9 as the complex
multiplication is required for only remaining nine
nontrivial coefficients. Therefore, the system actually
required 36 real multipliers and 18 adders/subtractors
and this approach is considered as the first approach
as shown in the Figure 3.
 Let x and y be the complex numbers and the
multiplications of the numbers can be implemented
by the following equations:

 Z-real=x-real*y-real – x-imag*y-imag
 Z-imag= x-real*y-imag+ y-real*x-imag

Figure 3.Implementation of First Approach

Then, we modify the complex multiplication
equations in order to reduce the number of real
multipliers using in each complex multiplier as
shown in the Figure 4. The modified equations can be
written as:

 Z-real=x-real*(y-real+y-imag)–(x-real+x-mag)*y-imag

 Z-imag= x-real(y-real+y-imag)+(x-real-x-imag)*x-real

Figure 4.Implementation of Second Approach

In this second approach, the number of the real
multipliers reduces to three, and the number of the
real adders increases to five. But the complexity of
adders is very lower than that of multipliers.

5. System Implementation and Synthesis
Report

The 16 Point Radix 4 Parallel FFT processor is
simulated on Modelsim SE 6.4 with VHDL.

The system works at the positive edge triggered
clock together with the active low reset signal. And
the timing simulation of the system design is depicted
in the Figure 5 (a), 5 (b), 5 (c) and 5 (d).

5.1. Simulation Result

 In the timing simulation diagram 5(a), we can see
that clk and reset are the global control signals to the
FFT.

Figure 5(a). Modelsim simulation result

 The Figure 5(b) and 5(c) show the output signals
and their resultant values which can be represented in
singed fixed point format.

Figure 5(b). Modelsim simulation result

Figure 5(c). Modelsim simulation result

The diagram 5(d) shows the output result in a real
data type format.

Figure 5(d). Modelsim simulation result

As the verification point of view, the system is

synthesized with Virtex xc4vlx25-12ff668
prototype using Xilinx 12.2 se logic analyzer.
 The timing summary for all approaches is
described in Table 2.

Table.2 Timing Summary

 Algorithms Operating Frequency Slices

Conventional FFT 91.416MHz 3471

First Approach 102.501MHz 2603

Second Approach 91.366MHz 2850

The HDL synthesis report of conventional and

proposed two approaches are mention in the Table 3
and 4 receptively.

Table 3. HDL Synthesis Report of Conventional

FFT Design

Multipliers 48

17x17-bit multiplier 48

Adders/Subtractors 240

18-bit adder 56

18-bit subtractor 32

19-bit adder 32

19-bit subtractor 32

20-bit adder 32

20-bit substractor 32

35-bit adder 12

35-bit substractor 12

#Registers 136

17-bit register 64

34-bit register 48

35-bit register 24

#Xors 24

1-bit xor2 24

Table 4. HDL Synthesis Report of Proposed

Design with Two Approaches

 First Approach Second Approach

Multipliers 36 27
16x16-bit multiplier 36 27
Adders/Subtractors 228 255
17-bit adder 50 41
17-bit subtractor 32 32
18-bit adder 32 32
18-bit subtractor 32 32
19-bit adder 32 32
19-bit substractor 32 32
33-bit adder 9 9
33-bit substractor 9 9
#Registers 118 109
16-bit register 64 64
32-bit register 36 27
33-bit register 18 18
#Xors 18 18
1-bit xor2 18 18

6. Conclusion

 In this paper, the parallel FFT processor
architecture with separate complex multiplier is
presented. The parallel architecture is used in order
to get high performance. Furthermore, the advantage
of separating the butterfly units and complex
multiplier units is that each component can be easily
modifiable as the complex multiplier unit is
embedded in the butterfly unit in most of the
conventional FFTs.

In the first approach, two adders and four real
multipliers are used for complex multiplier which has
the greater speed of 102.501 MHz. The second
approach which includes three real multipliers and
five real adders, is used to reduce the number of the
real multipliers as the real multiplier is larger and
more complex than the adder .But the maximum
frequency of latter approach is reduced to 91.366
MHz which is nearly the same speed as the
conventional approach’s maximum operating
frequency (91.416 MHz), we can reduce the resource
usage at all.

7. References

[1] Eleanor Chu and Alan George. Inside the FFT Black

Box Serial and Parallel Fast Fourier Transform
Algorithms, CRC press.

[2] John G.P. and D.G. Manolakis , 1988. Introduction to

Digital Signal Processing .Mac Milan.

[3] Joseph McRae Palmer, The Hybrid Architecture

Parallel Fast Fourier Transforms (HAPFFT) ,Master
Thesis, Department of Electrical and Computer
Engineering, Brigham Young University, August
2005

[4] J. W. Cooley and J. W. Tukey, "An algorithm for the
 machine calculation of complex Fourier series," Math.
 Comp., vol. 19, pp. 297-301, 1965.

[5] Mahmud Benhamid and Masuri Bin Othman,

"Hardware Implementation of Genetic Algorithm
Based Canonical Signed Digit Multiplierless Fast
Fourier Transform Processor for Multiband Orthogonal
Frequency Division Multiplexing Ultra Wideband
Applications ", Journal of Mathematics and Statistics
5(4): 241-250, 2009.

[6] M. Kannan and S.K. Srivatsa , "Low Power Hardware
 Implementation of High Speed FFT Core ", Journal

of Computer Science 3 (6): 376-382, 2007.

[7] Nima Aghaee and Mohammad Eshghi. "Design of a

pipelined R4SDF processor", 17th European Signal
Processing conference (EUSIPCO 2009), Glasgow,
Scotland, August 24-28, 2009.

[8] S. He and M. Torkelson, "A new approach to pipeline

FFT processor," In Proc. of the 10th International
Parallel Processing Symposium (IPPS), Honolulu,
Hawaii, USA, 1996.

[9] Steven W. Smith, The Scientist and Engineer’s Guide

to Digital Signal Processing, Second Edition.

[10] Weidong Li, Studies On Implementation of Low

Power FFT Processors, Linköping Studies in Science
and Technology , Thesis No. 1030

[11] http://fftguru.com/fftguru.com.tutorial.pdf

[12] http://mason.gmu.edu

