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Abstract 
 

The FFT processor is a critical block in all multi-
carrier systems used primarily in the mobile systems 
for image and digital signal processing applications. 
It is therefore interesting to develop an FFT 
processor as a widely usable VLSI building block. 

In order to be flexible so that the processor can be 
used in a variety of applications without major 
redesign , the performance in terms of computational 
throughput , and transform length should be: easily 
modifiable. This system implements the 16 point 
radix 4 parallel Fast Fourier Transform processor 
with sfixed format (signed fixed point representation) 
and focuses on the complex multiplier design with 
two different approaches. 
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1. Introduction 
 

A major application of Fourier transforms is the 
analysis of a series of observations, xl, l = 0,…, N−1: 
which allows us to decompose a signal in the time 
domain and analyze the signal in the frequency 
domain. The sources of such observations are many: 
ocean tidal records over many years, communication 
signals over many microseconds, sonar signals over a 
few minutes, and so on. The assumption is that there 
are repeating patterns in the data that form part of the 
x. However, usually there will be other phenomena 
which may not repeat, or repeat in a way that is not 
discernibly cyclic. This is called “noise.” The DFT 
(The Discrete Fourier Transform) helps to identify 
and quantify the cyclic phenomena. If a pattern 
repeats itself m times in the N observations, it is said 
to have Fourier frequency m. [1] 

The Fast Fourier Transform (FFT), an efficient 
algorithm to compute the Discrete Fourier Transform 
(DFT), is one of the most important operations in 
modern digital signal processing and communication 
systems. [2]The parallel FFT is a special type of FFT 
which can compute the FFT algorithms by adding 
more processing elements to the processor in each 

sequential pipeline stage to improve the performance. 
But the drawback of parallel design is that the area of 
FFT becomes enlarge. [3][12] 
 

2. A Brief Review on DFT and FFT 
 

Basically, the computational problem for the DFT 
is to compute the sequence {X(k)} of N complex-
valued numbers given another sequence of data 
{ x(n)} of length N, according to the formula   
 
 
 

 
Where  
WN's are also called "twiddle factors" which are 

complex values around the unit circle in the complex 
plane. [2][9]The complex ’rotator’ WN rotates the 
other direction and the result is divided with the 
number of points N. So the computation is basically 
the same. 

We can exploit shared twiddle factor properties 
(i.e. sub-expression sharing) to reduce the number of 
multiplications in DFT. These classes of algorithms 
are called Fast Fourier Transforms. An FFT is simply 
an efficient implementation of the DFT. 

Mathematically FFT = DFT 
FFT exploits two properties in the twiddle factors: 
 

– Symmetry Property:  
 

–  Periodicity Property: 
 
Actually, direct computation of Discrete Fourier 

Transform (DFT) requires on the order of N2 

operations where N is the transform size. The FFT 
algorithm, first explained by Cooley and Turkey, 
open a new area in digital signal processing by 
reducing the order of complexity of DFT from N2 to 
Nlog2N. [4] 
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3. Radix 4 FFT Algorithm 
 

Radix-4 split x (n) into four time sequences 
instead of two in radix-2.The algorithm splits x (n) 
into four decimated sample streams 

f1(n) = x(4m) 
f2(n) = x(4m+1)  
f3(n) = x(4m+2)  
f4(n) = x(4m+3) ,n=0, 1, .. N/4-1 

Therefore, the equations for breaking the he N-point 
DFT formula into four smaller DFTs becomes: 

 

 
From the definition of the twiddle factors, we 

have: 

 
Thus, we get :  

 To convert it into an N/4-point DFT we subdivide 
the DFT sequence into four N/4-point subsequences, 
X(4k), X(4k+1), X(4k+2), and X(4k+3), k = 0, 1, ..., 
N/4. Then, we obtain the following equations;[2][9] 

 

 
 
     The signal flow graph of the 16 point radix-4 fast 
fourier transform algorithm is shown in the Figure 
1.[5]  
 

 
 
 
 
 
 
 
Figure 1. Signal flow diagram of 16 point radix-4 

FFT 
 

4. 16 Point Radix 4 Parallel FFT overview 
 

In 16 Point Radix 4 Parallel FFT architecture, four 
butterfly units are used at the input sites that handle 
four inputs each. 

After processing in each butterfly unit, some 
outputs are fed directly into the one of four output 
sites butterfly units and the others are fed directly to 
left 3 output site butterfly units via complex 
multiplier as shown in the Figure 2. 

For all of the output comes out at the same time, 
we need to adjust and modify the complex multiplier 
design. The abstract view of the algorithm design is 
shown in the Figure 2. 

 

 
Figure 2. Abstract view of System Design 

 
4.1. Butterfly Units 

 
The butterfly takes four inputs and produces four 

outputs. 
In radix-2 FFT, the DFT equation is expressed as 

the sum of two calculations; one calculation sum for 
the first half and one calculation sum for the second 
half. 

 In this design, the radix-4 FFT implements the 
DFT equations as four summations. Butterfly units 
compute the summations by using four equations, 
each of which computes every fourth sample. 

The equations are as follows, 
 Let       x(n)         = xa+jya;   
             x(n+n/4)  = xb+jyb; 
             x(n+n/2)  = xc+jyc;                
             x(n+3n/4)= xd+jyd;  
as the four inputs for the butterfly.   
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as the four outputs from    the butterfly and 
          Wn=Wb  =Cb+j(-Sb) 
          W2n=Wc =Cc+j(-Sc) 

       W3n=Wd =Cd+j(-Sd) 
So that, the radix 4 equations become: 
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4.2. Complex Multiplier unit 
 

In most of FFT design implementation scheme, 
the conventional complex multiplication is performed 
with four real multipliers, one adder and one 
subtractor. As the literature survey, the complexity of 
a multiplier is much more than that of adder and 
subtractor. Thus we implemented our system with 
two approaches by reducing the number of 
multipliers. 
    As the number of coefficients to be multiplied in 
16-point FFT is 16 which are described in the follow 
table, Table 1. [5][6] 
 
Table 1. The coefficients for 16 point Radix 4 FFT 

 

 
 

A close observation reveals that the seven 
coefficients (7fff, 0000) are the trivial coefficients 
which are the quantized representation for (1, 0) in 
16-bit two’s complement format. The complex 
multiplication is not necessary for these coefficients. 
Data can directly pass through the multiplier unit 
without any multiplication, when data is multiplied 
with (7fff, 0000). [6] 

And also from the theoretical point of view, the 
conventional butterfly unit involves three complex 
multiplications, since for the first twiddle factor to be 
multiplied W0 and is always 1. For the 16 point FFT, 
there are four butterfly units to complete the entire 
FFT and thus requiring 12 complex multiplications. 
[2] 
    By detaching the complex multiplier unit apart 
from the butterfly unit, we can reduce the complex 
multiplier units from 12 to 9 as the complex 
multiplication is required for only remaining nine 
nontrivial coefficients. Therefore, the system actually 
required 36 real multipliers and 18 adders/subtractors 
and this approach is considered as the first approach 
as shown in the Figure 3. 
     Let x and y be the complex numbers and the 
multiplications of the numbers can be implemented 
by the following equations: 
 

 Z-real=x-real*y-real – x-imag*y-imag 
 Z-imag= x-real*y-imag+ y-real*x-imag 

 

 

Figure 3.Implementation of First Approach 

Then, we modify the complex multiplication 
equations in order to reduce the number of real 
multipliers using in each complex multiplier as 
shown in the Figure 4. The modified equations can be 
written as: 

 
      Z-real=x-real*(y-real+y-imag)–(x-real+x-mag)*y-imag 

 Z-imag= x-real(y-real+y-imag)+(x-real-x-imag)*x-real 
 

 

Figure 4.Implementation of Second Approach 

In this second approach, the number of the real 
multipliers reduces to three, and the number of the 
real adders increases to five. But the complexity of 
adders is very lower than that of multipliers. 



 

5. System Implementation and Synthesis 
Report 
 

The 16 Point Radix 4 Parallel FFT processor is 
simulated on Modelsim SE 6.4 with VHDL.  

The system works at the positive edge triggered 
clock together with the active low reset signal. And 
the timing simulation of the system design is depicted 
in the Figure 5 (a), 5 (b), 5 (c) and 5 (d). 
 
5.1. Simulation Result 
 
     In the timing simulation diagram 5(a), we can see 
that clk and reset are the global control signals to the 
FFT. 

 
Figure 5(a). Modelsim simulation result 

 
     The Figure 5(b) and 5(c) show the output signals 
and their resultant values which can be represented in 
singed fixed point format. 
 

 
Figure 5(b). Modelsim simulation result 

 

     
Figure 5(c). Modelsim simulation result 

 

The diagram 5(d) shows the output result in a real 
data type format. 

 

 
Figure 5(d). Modelsim simulation result 

 
As the verification point of view, the system is 

synthesized with Virtex xc4vlx25-12ff668      
prototype using Xilinx 12.2 se logic analyzer. 
     The timing summary for all approaches is 
described in Table 2. 
 

Table.2 Timing Summary 
 

 Algorithms Operating Frequency Slices 

Conventional FFT 91.416MHz 3471 

First Approach 102.501MHz 2603 

Second Approach 91.366MHz 2850 

 
The HDL synthesis report of conventional and 

proposed two approaches are mention in the Table 3 
and 4 receptively. 

 
Table 3. HDL Synthesis Report of Conventional 

FFT Design 
 

# Multipliers 48 

17x17-bit multiplier  48 

# Adders/Subtractors   240 

18-bit adder 56 

18-bit subtractor 32 

19-bit adder 32 

19-bit subtractor 32 

20-bit adder 32 

20-bit substractor 32 

35-bit adder 12 

35-bit substractor 12 

#Registers 136 

17-bit register 64 

34-bit register 48 

35-bit register 24 

#Xors 24 

1-bit xor2 24 

 
 
 
 
 
 
 



 
 
 
Table 4. HDL Synthesis Report of Proposed 

Design with Two Approaches 
 

  First Approach  Second Approach 

# Multipliers 36 27 
16x16-bit multiplier  36 27 
# Adders/Subtractors   228 255 
17-bit adder 50 41 
17-bit subtractor 32 32 
18-bit adder 32 32 
18-bit subtractor 32 32 
19-bit adder 32 32 
19-bit substractor 32 32 
33-bit adder 9 9 
33-bit substractor 9 9 
#Registers 118 109 
16-bit register 64 64 
32-bit register 36 27 
33-bit register 18 18 
#Xors 18 18 
1-bit xor2 18 18 

 
 
6. Conclusion 
 
     In this paper, the parallel FFT processor 
architecture with separate complex multiplier is 
presented. The parallel architecture is used in order 
to get high performance. Furthermore, the advantage 
of separating the butterfly units and complex 
multiplier units is that each component can be easily 
modifiable as the complex multiplier unit is 
embedded in the butterfly unit in most of the 
conventional FFTs.  

In the first approach, two adders and four real 
multipliers are used for complex multiplier which has 
the greater speed of 102.501 MHz. The second 
approach which includes three real multipliers and 
five real adders, is used to reduce the number of the 
real multipliers as the real multiplier is larger and 
more complex than the adder .But the maximum 
frequency of latter approach is reduced to 91.366 
MHz which is nearly the same speed as the 
conventional approach’s maximum operating 
frequency (91.416 MHz), we can reduce the resource 
usage at all.  
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